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Surface instability in windblown sand
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We investigate the formation of ripples on the surface of windblown sand based on the one-dimensional
model of Nishimori and OucHiPhys. Rev. Lett71, 197(1993], which contains the processes of saltation and
grain relaxation. We carry out a nonlinear analysis to determine the propagation speed of the restabilized ripple
patterns, and the amplitudes and phases of their first, second, and third harmonics. The agreement between the
theory and our numerical simulations is excellent near the onset of the instability. We also determine the
Eckhaus boundary, outside which the steady ripple patterns are unstable.

PACS numbds): 47.54+r, 45.70--n, 92.10.Wa

[. INTRODUCTION of the continuum model and uncovering some of the features
of ripple formation that are inaccessible to linear analysis.
Since the pioneering work of Bagndldl], many research- In particular, we perform a weakly nonlinear analysis

ers have investigated the complex dynamics of dry granulavalid near the onset of instability of a flat sandbed to deter-
materials at a surfacg—6]. Dry granular materials are as- mine the amplitude, shape, and propagation speed of the
semblies of macroscopic objects that interact with each otheipple pattern that forms in this regime. We also compare
essentially via a hard core repulsive potential. Hence they arféese results with our numerical integrations of the model
loosely connected, particularly at the surface. When thos€guations. These computations are rather unusual because
grains at the surface are exposed to a wind, they can readiffie model lacks an up-down symmetry, and especially be-
be ejected and carried by the wind until gravity eventuallycause accounting for saltation makes the model nonlocal in
pulls them back to the surface. The dynamics of a singlépace. We find, however, that the process of pattern selection
grain is rather simple, given by the Newtonian trajectory of ain this simple one-dimensional system, in particular the se-
point particle. Even so, experiments have shown that théection of the wavelength and speed of the pattdifis is
collective response of the grains can become exceedingl§imilar to what is seen in more complicated multidimen-
complex, ranging from the formation of simple ripple pat- Sional systems such as directional solidificatighor direc-
terns to ridges and dunes to violent tornad[ﬁs QOur cur- tional viscous flngerlnd9] That is, the wavelength of the
rent understanding of such complex phenomena remainf§1al pattern depends on the initial conditions, and may lie
mostly confined to compiling data on experimental observaanyWhel’e within a band of Iinearly stable final states. The
tions. With regard to the formation of ripple patterns, how-stable band turns out to be somewhat wider than in most
ever, there have been some attempts to construct a simple y&her models.
physical continuum model. In Sec. Il we review the Nishimori-Ouchi model equa-
We will investigate the continuum model due to Nishi- tions[3], point out a physical symmetry which they violate,
mori and Ouchi[3]. The Nishimori-Ouchi(NO) model of —and propose a simple modification of the model which re-
ripple patterns accounts for two elementary processes of sariPects that symmetry. In Sec. Il we carry out a linear stabil-
transportation by the wind which have been identified by
investigators in aeolian sand dynamics, namely saltation anc¢® —

creep[1,2]. Saltationrefers to the process by which surface ~ —
grains are ejected into the air under the influence of a strong¢ gg;ﬁe

wind and are blown downwind where they collide with other
surface grains. There they transfer momentum to these
downwind grains, which may themselves be ejected in turn,
thereby continuing the procetsee Fig. 1 Creepis the sur-
face movement of grains too heavy to be ejected into the ai
but light enough to be pushed along the surface. Creep als:
describes the surface movement of grains on hills under the g
influence of gravity. Previous studies based on the NO mode L=x- &
have been confined largely to linear stability analysis and

Monte Carlo simulations of a lattice version with simple  FIG. 1. Saltation refers to the process of a single grain being
rules for the grain dynamids,4]. The purpose of this paper ejected from the surface at a poifiand being blown to a landing

is to go one step farther by carrying out a nonlinear analysigoint x by the wind.
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ity analysis of the flat sand-bed solution of the model, bothNote that this equation is nonlocal kas a result of the
for the original Nishimori-Ouchi equations and for our modi- saltation gain term, which depends on conditions at a posi-
fication. We extend this in Sec. IV to give a weakly nonlin- tion £ which is a finite distance upwind of

ear analysis for both forms of the model. Section V presents To complete the model, we must now specify Bata-

our numerical calculations and compares them with the retion function an equation for the flight length of a single
sults of the weakly nonlinear analysis. The results are disgrain. In general, the locationsand¢ in the evolution equa-
cussed in Sec. VI. tion will be related byx=£&+L, wherel is the horizontal
length an ejected grain travels from takeoff to landing. This
will depend on the size of the grain, its speed when it takes
off, the wind velocity profile, and the topography of the sand
bed itself. Nishimori and Ouchi proposed the simple ansatz

II. ONE-DIMENSIONAL MODEL
FOR WINDBLOWN SAND

The starting point of the Nishimori-OuckiNO) model[3]
is a local conservation law for sand grains. b¢k,t) be the L=Lo+Dbh(¢,t). ©)
local height of the sand bed at positierand timet, mea-
sured from some reference level. The height increases whedere,L , is a parameter proportional to the shear stress of the

grains are added at position We write wind at the surface, or more precisely to the friction velocity
of the wind on the sand surfa¢él], andb in general de-
oh 4, pends on the average drag force on the grain. Nishimori and
—+—=0Qu, (1) Ouchi took bothL, andb to be constant, essentially assum-
gt~ ox ing the wind velocity to be a constant, independenx aihd
t, and unaffected by changes in the sand-bed profile.
where J(x,t) is a local flux of grains in the positive direc-  Equation(3) merely indicates that the higher the takeoff
tion atx, andQ,,(x,t) is the net input of grains atdue to  point of a grain in saltation, the longer its trajectory. As
nonlocal processes. Nishimori and Ouchi point oyt3], this amounts to assuming

The expression fod, embodies a model of creep. Nishi- that the height and topography at the point of landing may be
mori and Ouchi choose),=—D(dh/dx). Note that this neglected, and that only the surface heighs opposed to
merely expresses the tendency of grains to roll downhill; itocal topography is important at the takeoff point. While
does not include any bias favoring motion in the direction ofthis may be reasonabletfif(x) is everywhere close to zero, it
the wind. does violate a symmetry of the physical problem, namely

Saltation is modeled by gain and loss terms in the nonlothat the dynamics should be unaffected if we add any con-
cal transfer rat€®,, . LetN(x,t) denote the outward saltation Stant toh, thus changing our reference level. To restore this
flux of particles fromx at timet. That is, letN(x,t)dx be the ~ symmetry, it may be more appropriate to take the saltation
number of particles per unit time taking off from positions function to be
between x and x+dx. The loss term inQ,, is then
—AN(x,t), whereA is a scale parameter. The gain term is L=Ly+b[h(¢)—h(x)], (4)
proportional to the rate at which particles arrivexatfrom
other locationst upwind ofx. Suppose all particles that take where ¢ is the takeoff point and is the landing point. We
off from the interval €,£+d¢) subsequently land in the in- will discuss the effects of this modification below.
terval (x,x+dx). Then the number of particles per unittime  For convenience, we now put the model into dimension-
landing in this latter interval of lengttix is N(&,t)dé, so the  less form. Taking_,, b, andD to be constants, we chookg
gain term in the saltation flux is theAN(&,t)(dé/dx). Itis  to be the unit of horizontal length,y/b to be the unit of
possible to have more than ogethat satisfies this equation vertical length(i.e., of h), and Lé/D to be the time unit.
for a givenx. That is, grains landing a may have come Fyrther, we defingl(x,t) = (AbLy/D)N(x,t), a dimension-
from more than one takeoff poit If this is the case, then |ess measure of the outward grain flux due to saltation. The
the input term in the evolution equation should be summegnodel simplifies further if we chooskx,t) to be a constant
over the different values of. Jindependent ok andt, an assumption whose physical con-

Note that evaluatinl(¢) at timet neglects the flight time  tent is that the wind is uniform and there is no flux depen-
of the incoming grains; we expect the evolution of the sanddence on surface height. The evolution equation is then
bed profile to take place on a much longer time scale than
this, so that the time delay between takeoff and landing

2
should be unimportant. Indeed, experiments on the ripple @:ﬂjq %_1)_ (5)
formation by sand transported by waféi0] show the evo- gt ox? dx
lution of the ripple pattern occurring on time scales of sev-
eral hours. The original NO saltation relation becomes
Combining the various contributions to the flux and sub-
stituting into the general conservation law forgives the x=&é+1+h(&1), (6)

model evolution equation for the sand-bed profile,

and our symmetric modification of it is

oh 9 oh dé¢
=— D +AIN(ED o~ N . 2)

gt ox - ox X=E+1+h(ED)—h(x,t). (7)
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ll. LINEAR STABILITY ANALYSIS wherek is now thex component of the wave vector of the
Fourier mode and, is its y component. Clearly, the linear
Igrowth rate for a mode with nonzekq is always less than
the rate for the corresponding mode with=0. Thus we do

We first note that a flat sand-beus= hy= const, is always
a steady-state solution of the model for either choice of sa

tation relation. For the symmetric saltation relatigh this . S .
always givest=x— 1, while for the NO relatior{6) we have not expect to see instabilities in which the transverse shape
’ of the ripples becomes wavy, since the first instability to

=x—1—h,. In the latter case, however, we may then rede- . ; . . :
fgine the Ien%]th and time units—and the vaIueJezto map occur is against a mode in which the ripples are parallel to

the solution with any finiteh, (providedhy>—1) onto the they axis.

solution with hy=0. Specifically, we would take the hori-

zontal length unit to bd_ y(1+hg) instead ofLy, and J IV. NONLINEAR ANALYSIS

would then beAbLy(1+ho)N/D rather thanAbLoN/D. We now carry out a weakly nonlinear analysis to deter-
Thus we will takeh=0 to be the steady state whose stability mine the amplitude, shape, and propagation velocity of the
we will investigate. restabilized ripple patterns that form whéis slightly above

Linear stability analysis of this solution proceeds in theits critical valueJ,. The nonlocality of the model, the dis-
usual way: we expand the evolution equation to first order irpersion in the imaginary part of the linear growth rate, and
h and writeh as a linear combination of Fourier modes with the lack of an up-down symmetry lead to some unusual fea-
amplitudesh,. We find that the Fourier modes decouple, tures in the analysis.

even with the nonlocal term present, and each amplitude We begin with the assumption that the fundamental wave

grows or decays exponentially with time numberk of the pattern which develops does not deviate
much from the critical valu&. whenJis nearJ.. Hence we
h(t) o exd (o—iw)t], (8)  define a small parameterby setting
_ 2

with [3,11] J=Jct €, (12)

) and then define a scaled wave number deviatiby writing
o= —k?—Jksink, 9)

k=k.+ €q. (13
wyi=Jk cosk. (10

This is the appropriate scaling for the wave number because

_ ) . the stability boundary is approximately quadratickn k,

If we use the symmetric saltation relation instead of the NOynq |inear inJ near its maximum. With these definitions we

relation, theno is unchanged, butw, becomes—Jk(1 find from Eq.(9) that oy is of ordere2.

— Cosk). ) ) The first stage of the nonlinear analysis consists of ex-
For smallJ the 'reql growth rater, is negative for alk, so panding the evolution equatiaB) in powers ofh, assuming

the steady state is linearly stable. For large enoligow- e oyerall amplitude oh is small. To do this, we may

ever, there is a range &fin which oy is positive, so the flat | o\vrite the NO saltation relatiof6) in the form é=x—1

sand bed is then unstable. The onset of instability occurs at h(&,t), repeatedly substitute this expression forback

the valueJ. of J for which the maximum growth rate is 0. jniq theh(&,t) on the right side, and finally expand in pow-

We determine]. and the wave numbek. of the first un- o5 ofh Differentiating the result with respect xathen gives
stable perturbation by solving,=0 anddo/dk=0 simul-

taneously, which yield§, sink,= —k. andJ. cosk.=—1. We dé ) 1, R .
then findk.=4.493 andJ,=4.603. The wavelength of the g, =1~ (X=1)+F[h*(x=10)]" = c[h*(x=1)]
marginal modgin units ofLg) is A.=2#/k.=1.398, some-
what longer than the flight distance of a grain in saltation. +0(h%). (14
For k=Kk., the NO saltation relation leads to,= —k;, so
the phase Ve|0city of the marginal modevis wC/kC: —1. (It is remarkable that the eX.panSion dfldx has such an
With the symmetric saltation relation we get= —(1+J,)  €conomical form. We show in Appendix A that the pattern
=—5.60. This is a surprising result of the model, that whilecontinues to all orders ii.) To third order inh, then, the
the sand grains that form the ripples are blown downwind&volution equation becomes
the ripple pattern itself driftaipwind The group velocity, h
however, is large and positive: From EL0O) we get Ih(x,1)
dwy/dk=J(—k sink+ cosk), which goes tok?—1=19.19 ot
at the critical point. For the symmetric saltation relation, the J
group velocity is lower byJ, so at the critical point it is ——[h3(x—1)]"+---. (15)
14.58. Note that all velocities are in units DL . 6
If we make the problem two dimensional, allowing the
sand bed to extend in botk andy directions, very little
changes. The creep term in the evolution equation becom
DV?h, and as a result the expression fgr changes to

= h”(x,t)—Jh’(x—1,t)+%[h2(x— 107"

We now turn to the second stage of the calculation,
namely finding solutions to the third-order approximation
Ef?LS) to the evolution equation. We assume the solution will
have a fundamental wave numbleiin the unstable range,
_ ] with an amplitude of ordek. The quadratic terms in the
o(k,ky)=—k"—kj—Jksink, (1) evolution equation will then generate a Fourier component in
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the solution with wave numberk2and possibly a constant terms in the equation come only from expanding the analyti-
term, and the cubic terms will lead to a component withcal expressions fow, and\ in powers ofe. This also holds

wave number B. Thus we write for the equations for the higher harmonics. Thus we get the
5 first-order corrections to all of our results essentially for free.
h(x,t)~eM cosu+ e [My+M;cog2u+6,)] From Eq.(21) and the expressiof®) for o, we obtain the

+ €3M4 cog3u+ )+ - - -, (16) steady-state amplitudd to first order ine,

whereu=kx— ¢ and the amplitude®, Mo, M,, M and M?=(0.259 46-0.597 19*) — (0.877 25-2.107 74f°) eq

phasesp, 0,, 65 can all depend on time. We substitute this +0(e?). (22)
ansatz into the evolution equation and expand in powees of

Then the coefficients of casand sinu give equations for the  \ye then find the phase velocity,

fundamental amplitud®& and phasep:

. L e Upn= d/k=—1+4.4934q+ (1.877- 4.32@?) €?
M=o M — €“Jk*M oM cosk—g\]k M,M cogk—6,) —(3.439-10.1282) 3+ O( %), 29

2

€
+ — JKM3sink+O( &), (1p  from Eq.(18. _
8 As usual, the ripple solutions we have found are not all

stable; instead, those with too large a wave number deviation
g are linearly unstable. The calculation of the critical value
of q is rather intricate, so we defer it to Appendix B. The
result is that the range of stable wave numbers is rather wider
than usual—it extends out ta=0.909%), where qq
=(2/3.)"? is the wave number deviation at whieh, van-
ishes to leading order ia. At the edge of the stable range,
Evidently we need to findy, M,, and @, in order to de- the amplitudeM of the ripple solution is 0.4157 times its
termine the amplitud® and propagation velocitg/k of the ~ value atq=0.

pattern. Thex-independent term in the expansion of the evo-  If instead of the NO saltation relation we use the symmet-
lution equation giveﬂMozo, soM, is in fact a constant; as ric relation(?), the resultg of the ana_lysis are rather different.
argued above, we can choose it to be zero, sdviggerms ' N€ expansion oti¢/dx is not as simple and clean as the
in the M and ¢ equations can be dropped. The equations foiderivation above; the evolution equati@tb) is replaced by

M, and 6, come from the coefficients of cos(2 6,) and

2
b= 0 2IK2M g sink— — JK2M , sin(k— 0,)
k 0 2 2 2

2
€
- §J|<3|\/|2cosk+ O(e%). (18

_sin(ZJ+ 6,) in the evolution equation. These are best written M=h”(x,t)—.][h(x— 1) —h(x,0)]" + H[h(x— 1)
in the form at
d . ‘ . , ,
aMze—lt92:(0_2k_|_iw2k_2i wk)Mze—lﬂz_JKZMZGZIK —h(X,t)]h (X_l,t)} - E{[h(x— 1,t)
+0(€d). (19) —h(x,1)]?h"(x— 1)}’ = I{[h(x—1t)—h(x,t)]

’ _ Al .
Similarly, we find equations foM 3 and 6. X[V (=L - (24)
~ Note that in thg equation fawl(t), all the terms on the \ye again substitute the ansatks) into this equation and
right are of ordere”. ThereforeM (t) evolves on a long time  ork out the Fourier components of the result. After carrying

-2 H H . .
scale of ordere” <, while M, and 6, vary on times of order oyt the calculation we find a much larger value for the Lan-
unity. Thus we may regarfl as a constant in the equations gay coefficient,

for M, andM 3. Sinceo,y is negative M, exp(—i6,) goes to
a quasi-steady-state value which is proportionaitta Sub- A =151.26+88.014q+ O(€?). (25)
stituting this value into thé/ equation gives

Thus for a given wave number, the restabilized amplitide

M=o M— eAM3+0(e%). (200 of the ripples is smaller by a factor of about 3,
The analytical expression for the Landau conspafg com- M?2=(0.028 997 5- 0.066 7482) — (0.003 966
plicated and unenlightening; substituting E¢E2) and (13)
into it gives —0.0190315°2)eq+O(€?). (26)
\=16.905+ 64.68Gq + O(€). (21)  The phase velocity is more negative than before, as we found

. . . . from the linear stability analysis,
Note that the correction terms in the evolution equation for

M, wh.ic.h would come from including hig.her—order.terms in vpn=—5.6033+ 4.4934q — (1.506- 1.1647%72) €2
the original expansionél5) for the evolution equation and
Eq.(16) for h(x,t), are of ordete?, note®. As a result, the:® —(0.197-1.8531%) €3+ O(€%). (27)
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For a given amplitude, however, the harmonics are stronge
than before. The range of wave numbers for which these
solutions is stable is somewhat narrower than before but still
wider than usual, extending out tp=0.7571yy, where the
amplitudeM is 0.6533 times its value af=0.

02 |

V. NUMERICAL SOLUTIONS eM

We now present numerical solutions and compare then
with the predictions made in the preceding section. The non-
local evolution equatiois) was solved numerically with pe-
riodic boundary conditions on a system of length2 7/Kk,
so that only the Fourier modesk contributed to the solu-
tions. For the discretization scheme, we chose an explicit
method using forward differences in time and central differ-

01|

ences in space. The axis was discretized®aqually spaced %2 24 26 48
sites withAx=27/kx 2~ ° and solutions were generated for k
five different values ofJ near J,=4.603, namelyJ FIG. 2. The steady state amplitud®! vs k for five different

=4.62,4.65,4.70,4.75,4.80 with values lofthosen to span  yalyes ofJ. The continuous lines are the analytical predictions
the unstable region. Initial conditions were sinusoids of waveyiven by Eq.(22).
numberk centered aroundh=0. At t=0, we start with a
sinusoid at a particular wave numberand let it evolve with  gible. Hence, our results without these corrections are virtu-
(AX)?/At=1/4 until it reaches a steady state. This takesally identical to those with corrections.
about 16 time steps. The nonlocal term in the evolution Figure 2 shows the amplitudeM of the fundamental
equationJ(d¢/dx—1), was evaluated for a givenby find-  mode as a function ok for different values of]. The data
ing the nearest upwind value @fsatisfying the equation points are fairly close to the values predicted by the first-
=¢+1+h(€). Specifically, the first root of the function order expansiorf22), which are represented by continuous
f(&;x) =&+ 1+h(€)—x with value less tha was obtained  curves. Note that the curves are asymmetric around the criti-
by simply finding the two sites upwind ofand nearest to it cal valuek. and the asymmetry becomes more pronounced
between whictf (¢;x) changed sign. Thedé/dx was calcu-  for larger J. The weakly nonlinear analysis is capable of
lated using the values di at these sites. The final steady predicting this asymmetry only because the ordéerms are
state,h(x,t), is then Fourier transformed, i.e., included.
In Fig. 3 we plot the phase velocity of the fundamental
o mode againsk for different values ofl. The speed was ob-
h(x,t)= 2 [ay(t)sinnkx+ b, (t)cosnkx], (28)  tained by calculatingp(t) in the expression cfex— ¢(t)],
n=1 which is proportional to the fundamental mode in the steady
state. The functiorb(t) was found to be linear ity sov was
from  which we obtain M,=(a;+b7)"® and 6, calculated aw = ¢/k. The data points are compared to the
=tan (b,/a,). Note thatM,;=¢eM and 6,= ¢ in this no-
tation. The nonlinear analysis in the preceding section pre-
dicts that these quantities will go to time-independent values.
We find numerically that they actually oscillate as a function
of time around their mean values. However, the magnitudes o}
of these oscillations are quite small and decrease with in-
creasing grid resolution, so we believe them to be numerical
artifacts. We therefore take the time averaged mean value
and compare them with the predictions of the weakly non-
linear analysis.

We also find that although we start with an initial profile — _, |
with the average heighhy=0, the mean position of the
steady state pattern shifts slightly upward in some cases
downward in others, to a small but finitg. Since the mean
height of the sand bed is conserved by the exact evolutior
equation, we believe that this is also a numerical artifact.
Moreover, as mentioned in Sec. Il, we can map any steady

state solution with finitehy to the solution withhg=0 by 42
redefining the horizontal length scale frolry to Lo(1 k
+ho) and shifting the control parameter froth to J(1 FIG. 3. The propagation speed of the steady state pattgnss

+ho). However, the magnitude of the offse§ was always «k for different values of). Numerically obtained values are com-
of the order of 10° to 10 3, and thus in all cases studied pared to the analytical predictiorsontinuous curvesfrom Eq.
here, the corrections due to such an offset are quite negli23).
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FIG. 4. The ratios(a R,=M,/M? and (b) R;=M3/M?3 are FIG. 5. (a) 8, and(b) #; are plotted againsk for five different
plotted againsk. The solid line is the analytical prediction. values ofJ. The solid line is the analytical prediction.

weakly nonlinear predictiongsolid line) given by Eq.(23). slope of the numerical data. For highkwe observe a sys-
Only for fairly largeJ, and only near the high-wave-number tematic downward deviation in the numerical results. The
end of the band of ripple solutions, does the velocity becomé&hift appears to be linear i, and so is second order i
positive, that is, in the direction of the wind. =(3-J3)"
In Figs. 4a) and 4b) are plotted the ratios of the ampli-
tudes of the second and third harmonics to the appropriate
powers of the fundamental ampltude, iB,=M,/M? and
R;=M;3/M?3. The data fit quite well with the theoretical pre-  We have carried out numerical and weakly nonlinear
dictions, R,=0.908115-0.5011&q and R3=1.52273 analyses of the Nishimori-Ouchi continuum mof&[11] for
+1.8938%q, in particular near the ons&t=4.493, where  windblown sand, and also for a modification of that model
the nonlinear analysis is most reliable. Note that the firstwhich respects the physical symmetry of the system under
order terms in the analytical results match the slope of thehanges of the reference level of height. Both versions of the
numerical results. The curvature which is evident in the numodel yield the surprising result that the ripple patterns,
merical data fok farther fromk. is apparently a higher-order which form when the flat sand bed becomes unstable, drift
effect. Note that the width of the band of ripple solutions upwind even as the sand that forms the ripples is blown
increases withe, so an appreciably large is required to  downwind. This drift is found in the linear stability analysis
reach these larger values |&f— k| . and persists in the weakly nonlinear results, and numerical
In Figs. 5a) and 8b) we plot the phase angle® and 0, integrations confirm that it is a real consequence of the
againstk. The agreement between the simulations and thenodel. Such a counterintuitive result has not been examined
weakly nonlinear resultsg,/7=0.22916-0.3618%q and  or detected by previous Monte Carlo simulations of this
03/7m=0.4309-0.6024q, is again quite strong fod near  model[3,11]. It would be interesting to check experimentally
onset. The ordeeterms in the analytical results match the whether or not ripple patterns can move against the wind,

VI. DISCUSSION
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and to determine whether this prediction is a strength or a o © (= 1)k d*hk(x—1)
weakness of the model. The symmetric version of the model If:f f(x— 1)2 K A dx. (Ab)
actually predicts a considerably higher upwind drift speed - k=0 X

than the original Nishimori-Ouchi version. This result has the same form as the original expression for

Given that the Nishimori-Ouchi saltation relation violatesg but with d/dx replaced by an expansion. However
. . - f y - 1
a fundamental symmetry of the physical system, it is IOerhapsince the test functiohis arbitrary, this requires the expan-

surprising that replacing it with our symmetric saltation re-".
lation results in only quantitative changes in the results. The'on anddé/dx to be equal,
restabilized ripple pattern for a given value of the control
parameter has a smaller amplituley a factor of about B 2=
and higher drift velocity(by a factor of over bin the sym- dx &
metric model than in the original version. The relative sizes = . ) )
and phases of the higher harmonics in the ripple shape atéhich is used written in Eq(15).

also different for the two models.

A number of modifications to the model are needed in APPENDIX B: STABILITY OF RIPPLE SOLUTIONS
order to make it comparable with experiments. A major in- AND THE ECKHAUS BOUNDARY
gredient that is left out of t_he mo_del Is any effect of the_ In this section we examine the stability of the ripple so-
surface topography on the wind. This lack means that there IS i : .
no shadowing effect in the model. Including such an effectunons’ a_nd_ S0 d_etermme the _Eckhaus l_)oundary InJéke
would make it more likely for graiﬁs to settle on the down- plane, within which the solutions are linearly stable and

. . ) . : therefore may be observed. We begin with the ripple solution
wind side of a ripple than on the upwind side, and more
likely for them to be blown off the upwind side than the ho(X,1) = M cog kx— wt) + €2M , co§ 2(kx— wt) + 5]
downwind side. This would likely reduce the tendency of the
ripples to drift upwind. The result that the ripples drift up- +0(€3M3), (B1)
wind in this model, which neglects shadowing, may be an
indirect indication of the importance of shadowing in theWith k=k.+e€q, and we add an infinitesimal perturbation
development of real ripple patterns. An improved model ofh1(x,t). If the perturbation contains a Fourier component
creep may also be needed; a downwind bias in the creepith wave numbek+ eq’, then the nonlinear terms in the
would modify the drift velocity. Perhaps most critical is a evolution equation will generate a component with wave
better and more realistic form of the saltation function,numberk—eq’. Thus we will start the calculation by taking
which must account for the effects of the topography of theh; to have the form
sand bed, and the many particle dynamics of the grains in the
air as well as on the surface. hi(x,) =A_(t)cog(k—eq")x—[wt+ ¢_(1)]}

+A, (t)cod(k+eq')x—[wt+ ¢ (1)]}.
(B2)

(—1)% d*nk(x—1)
0 k! ka

(A6)

APPENDIX A

Consider the integral o o ) ) _
Substituting this into the evolution equation, expanding, and

o d¢ picking off the coefficients of the sines and cosines lof (
IfEJ' f(x=1) g, 9% (Al)  —eq')x and k+ €eq’)x yields a closed set of equations for
o the amplitudesA_ and A, and the phase, +¢_. These

whereé&(x) is given by the saltation relatidi®) andf is a test equations have the form

function which is integrable and infinitely differentiable, but
otherwise arbitrary. We now change variables in this integral

from x to ¢, , |
If:f7 f[&+h(£)]dé, (A2) of -
and expand the integrand in powerstofo get N_“ ]
S AL * '
If=f 2 @ ag e (A3)
=1
Next we integrate th&th term by partk times to get
-4H p
o (—DFd*n (9

'f‘J ()2 0 —agc 96 A

: x-(}:#-}:_)/za'

and finally change variables again frafrto x=£¢+1, FIG. 6. The right- and left-hand sides of E@®11).
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A_=3_A_+aA, cosy, Clearly this equation has two_fixed point_s., and solving it
exactly reveals that the one with the positive real part is a
. global attractor and the one with the negative real part is a
A,=3_ A, +aA_cosy, global repeller. ThuR cosy does go to a constant, and from
its value we can decide whether the ripple state is stable or
not.
Since it is the real part aZ, namelyR cosy, that deter-
mines whether the perturbation grows or decays, it is useful
hto rewrite Eq.(B8) in terms of the real and imaginary parts

g=0—a[ (A, IA_)+(A_IA,)]siny, (B3)

whereys is ¢, + ¢_ plus a constant which depends loand
g’ (but not timg, and the overdot denotes a derivative wit
respect to the slow time variablket. The coefficients are or Z,
given to leading order i by

0 Z=X+iY. (B9)
s ke (ke 2x M2 200" — a2
==\ 2 e/ reaa Aty We find
a=aokiM?=1.981 8%:M?, X=a(1-X)+(3,~3 )X—QY+aY?,
1 , Y=(2,-3_)Y+QX—2aXY. (B10)
Q=§k§M2+3kcq 2, (B4) "

By linearizing about a fixed pointq,Y) of this system, we
Note that it is important to keep the second-order terrhgin  quickly find that the fixed point is an attractor > (X .
during the calculation, since it contributesdo (Omitting it —3 _)/2a. To find the fixed points, we se&X=Y=0 and
changesy, to 2.58559, a 30% change. solve the second equation f#iin terms ofX, then substitute

We must now determine whether the amplitudes given bynto the first equation to get
Eq. (B3) grow or decay with time. We can simplify the equa-
tions somewhat by defining O2X(aX-3,+3 )
a—X(aX=2,+3_)= 5
R=A, /A_: (B5) (2aX-24+3.)

(B11)

the amplitude equations then become ) ) . .
The two sides of this equation are plotted in Fig. 6. Both

sides are symmetric aboxt= (X, —3 _)/2«, so there is

A_=(3_+aRcospA, , clearly one solution wittX greater than this—the attractor—
and one, the repeller, witK less. In order for the perturba-
R=(3,-3 )R+a(1—R?) cosi, tion to decay, the attractor must haXeless than—3, _ /a.

From the plot, we see that this means thaXat— 3 _ /« the
_ right side of Eq.(B11) must be greater than the left side.
y=Q— o[ (1+R?/R]siny. (B6)  After a little algebra, we can write this condition for the

_ ) _perturbation to decay in the form
Note that the first equation decouples from the last two. If it

happens thaR and ¢ go to constants as—, then the (3, +3_)

amplitudes decay fa¥ _ + aR cosy<0 and grow otherwise. DI >m- (B12)
Thus for a giverqg, the ripple statgB1) is linearly stable if T
this inequality is satisfied foevery d, otherwise it is un-
stable. To see whad and ¢ actually do, we combine th@
and ¢ equations into an evolution equation for the complex
variable

Equation(B12) is the condition for the amplitude of a
perturbation with apecificvalue ofq’ to decay. In order to
conclude that the ripple solution with a givenis linearly
stable, we must see to it that this condition is satisfiedafor

_ ; g’. For this we must substitute for the parameters from Eq.
Z=Rexp(iy), &7 (B4) above. To put the result into a useful form, we define
namely, Q=2q'?/k?M? and eliminatey? in favor of M2. After some
. rearranging, we find that the condition for the solution to be
Z=a(1-Z)+ (2, -3_+iQ)Z (B8)  stable is

,_ 16Q ke(B+Q)?+(1+3Q)?
M= k2[(B—Q)2+4Q][K4(B+ Q)2+ (1+3Q)?]— 16a3(B+Q)?’
C C 0

(B13)
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where B=1—(4\/k?)=0.834132. The complicated func- while the Eckhaus boundary is given by

tion of Q on the right has a single maximum for positi@e

at a height of 0.044 84. Ripple states wit? below this are 3

unstable, while those witiM? larger than this are linearly [k—k¢| <0.909500= /1.654<——1>. (B15)
stable. From this we find that the range of wave numbers of Je

linearly stable ripple solutions is given dy|<0.909%,

whereqo=(2/.)*? is the largest wave number for which @ For the symmetric saltation relation, the structure of the
ripple solution exists. calculation is the same but the numbers are different. We

In summary, we have found that in the weakly nonlinearfing that the marginally stable wave number is givendpy

regime, the flat sand bed is unstable against perturbations g 7571, so the Eckhaus boundary is now given by
with wave number in the range

J J
|k—k¢| < eqo= \/2(J——1), (B14) |k—kc|<0.757%q,= \/1.1465<J——1). (B16)
Cc
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