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Surface instability in windblown sand
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We investigate the formation of ripples on the surface of windblown sand based on the one-dimensional
model of Nishimori and Ouchi@Phys. Rev. Lett.71, 197~1993!#, which contains the processes of saltation and
grain relaxation. We carry out a nonlinear analysis to determine the propagation speed of the restabilized ripple
patterns, and the amplitudes and phases of their first, second, and third harmonics. The agreement between the
theory and our numerical simulations is excellent near the onset of the instability. We also determine the
Eckhaus boundary, outside which the steady ripple patterns are unstable.

PACS number~s!: 47.54.1r, 45.70.2n, 92.10.Wa
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I. INTRODUCTION

Since the pioneering work of Bagnold@1#, many research-
ers have investigated the complex dynamics of dry gran
materials at a surface@2–6#. Dry granular materials are as
semblies of macroscopic objects that interact with each o
essentially via a hard core repulsive potential. Hence they
loosely connected, particularly at the surface. When th
grains at the surface are exposed to a wind, they can rea
be ejected and carried by the wind until gravity eventua
pulls them back to the surface. The dynamics of a sin
grain is rather simple, given by the Newtonian trajectory o
point particle. Even so, experiments have shown that
collective response of the grains can become exceedi
complex, ranging from the formation of simple ripple pa
terns to ridges and dunes to violent tornadoes@2#. Our cur-
rent understanding of such complex phenomena rem
mostly confined to compiling data on experimental obser
tions. With regard to the formation of ripple patterns, ho
ever, there have been some attempts to construct a simpl
physical continuum model.

We will investigate the continuum model due to Nish
mori and Ouchi@3#. The Nishimori-Ouchi~NO! model of
ripple patterns accounts for two elementary processes of
transportation by the wind which have been identified
investigators in aeolian sand dynamics, namely saltation
creep@1,2#. Saltationrefers to the process by which surfa
grains are ejected into the air under the influence of a str
wind and are blown downwind where they collide with oth
surface grains. There they transfer momentum to th
downwind grains, which may themselves be ejected in tu
thereby continuing the process~see Fig. 1!. Creepis the sur-
face movement of grains too heavy to be ejected into the
but light enough to be pushed along the surface. Creep
describes the surface movement of grains on hills under
influence of gravity. Previous studies based on the NO mo
have been confined largely to linear stability analysis a
Monte Carlo simulations of a lattice version with simp
rules for the grain dynamics@3,4#. The purpose of this pape
is to go one step farther by carrying out a nonlinear analy
PRE 611063-651X/2000/61~6!/6750~9!/$15.00
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of the continuum model and uncovering some of the featu
of ripple formation that are inaccessible to linear analysis

In particular, we perform a weakly nonlinear analys
valid near the onset of instability of a flat sandbed to det
mine the amplitude, shape, and propagation speed of
ripple pattern that forms in this regime. We also compa
these results with our numerical integrations of the mo
equations. These computations are rather unusual bec
the model lacks an up-down symmetry, and especially
cause accounting for saltation makes the model nonloca
space. We find, however, that the process of pattern selec
in this simple one-dimensional system, in particular the
lection of the wavelength and speed of the patterns@7#, is
similar to what is seen in more complicated multidime
sional systems such as directional solidification@8# or direc-
tional viscous fingering@9#. That is, the wavelength of the
final pattern depends on the initial conditions, and may
anywhere within a band of linearly stable final states. T
stable band turns out to be somewhat wider than in m
other models.

In Sec. II we review the Nishimori-Ouchi model equ
tions @3#, point out a physical symmetry which they violat
and propose a simple modification of the model which
spects that symmetry. In Sec. III we carry out a linear sta

FIG. 1. Saltation refers to the process of a single grain be
ejected from the surface at a pointj and being blown to a landing
point x by the wind.
6750 ©2000 The American Physical Society
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PRE 61 6751SURFACE INSTABILITY IN WINDBLOWN SAND
ity analysis of the flat sand-bed solution of the model, b
for the original Nishimori-Ouchi equations and for our mod
fication. We extend this in Sec. IV to give a weakly nonli
ear analysis for both forms of the model. Section V prese
our numerical calculations and compares them with the
sults of the weakly nonlinear analysis. The results are
cussed in Sec. VI.

II. ONE-DIMENSIONAL MODEL
FOR WINDBLOWN SAND

The starting point of the Nishimori-Ouchi~NO! model@3#
is a local conservation law for sand grains. Leth(x,t) be the
local height of the sand bed at positionx and timet, mea-
sured from some reference level. The height increases w
grains are added at positionx. We write

]h

]t
1

]Jl

]x
5Qnl , ~1!

whereJl(x,t) is a local flux of grains in the positive direc
tion at x, andQnl(x,t) is the net input of grains atx due to
nonlocal processes.

The expression forJl embodies a model of creep. Nish
mori and Ouchi chooseJl52D(]h/]x). Note that this
merely expresses the tendency of grains to roll downhill
does not include any bias favoring motion in the direction
the wind.

Saltation is modeled by gain and loss terms in the non
cal transfer rateQnl . Let N(x,t) denote the outward saltatio
flux of particles fromx at timet. That is, letN(x,t)dx be the
number of particles per unit time taking off from position
between x and x1dx. The loss term inQnl is then
2AN(x,t), whereA is a scale parameter. The gain term
proportional to the rate at which particles arrive atx from
other locationsj upwind ofx. Suppose all particles that tak
off from the interval (j,j1dj) subsequently land in the in
terval (x,x1dx). Then the number of particles per unit tim
landing in this latter interval of lengthdx is N(j,t)dj, so the
gain term in the saltation flux is thenAN(j,t)(dj/dx). It is
possible to have more than onej that satisfies this equatio
for a givenx. That is, grains landing atx may have come
from more than one takeoff pointj. If this is the case, then
the input term in the evolution equation should be summ
over the different values ofj.

Note that evaluatingN(j) at timet neglects the flight time
of the incoming grains; we expect the evolution of the sa
bed profile to take place on a much longer time scale t
this, so that the time delay between takeoff and land
should be unimportant. Indeed, experiments on the rip
formation by sand transported by water@10# show the evo-
lution of the ripple pattern occurring on time scales of se
eral hours.

Combining the various contributions to the flux and su
stituting into the general conservation law forh gives the
model evolution equation for the sand-bed profile,

]h

]t
5

]

]x
D

]h

]x
1AFN~j,t !

dj

dx
2N~x,t !G . ~2!
h

ts
-

s-

en

it
f

-

d

-
n
g
le

-

-

Note that this equation is nonlocal inx as a result of the
saltation gain term, which depends on conditions at a p
tion j which is a finite distance upwind ofx.

To complete the model, we must now specify thesalta-
tion function, an equation for the flight length of a singl
grain. In general, the locationsx andj in the evolution equa-
tion will be related byx5j1L, whereL is the horizontal
length an ejected grain travels from takeoff to landing. T
will depend on the size of the grain, its speed when it ta
off, the wind velocity profile, and the topography of the sa
bed itself. Nishimori and Ouchi proposed the simple ans

L5L01bh~j,t !. ~3!

Here,L0 is a parameter proportional to the shear stress of
wind at the surface, or more precisely to the friction veloc
of the wind on the sand surface@11#, and b in general de-
pends on the average drag force on the grain. Nishimori
Ouchi took bothL0 andb to be constant, essentially assum
ing the wind velocity to be a constant, independent ofx and
t, and unaffected by changes in the sand-bed profile.

Equation~3! merely indicates that the higher the takeo
point of a grain in saltation, the longer its trajectory. A
Nishimori and Ouchi point out@3#, this amounts to assumin
that the height and topography at the point of landing may
neglected, and that only the surface height~as opposed to
local topography! is important at the takeoff point. While
this may be reasonable ifh(x) is everywhere close to zero,
does violate a symmetry of the physical problem, nam
that the dynamics should be unaffected if we add any c
stant toh, thus changing our reference level. To restore t
symmetry, it may be more appropriate to take the saltat
function to be

L5L01b@h~j!2h~x!#, ~4!

wherej is the takeoff point andx is the landing point. We
will discuss the effects of this modification below.

For convenience, we now put the model into dimensio
less form. TakingL0 , b, andD to be constants, we chooseL0
to be the unit of horizontal length,L0 /b to be the unit of
vertical length~i.e., of h), and L0

2/D to be the time unit.
Further, we defineJ(x,t)5(AbL0 /D)N(x,t), a dimension-
less measure of the outward grain flux due to saltation. T
model simplifies further if we chooseJ(x,t) to be a constant
J independent ofx andt, an assumption whose physical co
tent is that the wind is uniform and there is no flux depe
dence on surface height. The evolution equation is then

]h

]t
5

]2h

]x2
1JS dj

dx
21D . ~5!

The original NO saltation relation becomes

x5j111h~j,t !, ~6!

and our symmetric modification of it is

x5j111h~j,t !2h~x,t !. ~7!
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III. LINEAR STABILITY ANALYSIS

We first note that a flat sand-bed,h5h05const, is always
a steady-state solution of the model for either choice of
tation relation. For the symmetric saltation relation~7! this
always givesj5x21, while for the NO relation~6! we have
j5x212h0. In the latter case, however, we may then red
fine the length and time units—and the value ofJ—to map
the solution with any finiteh0 ~providedh0.21) onto the
solution with h050. Specifically, we would take the hor
zontal length unit to beL0(11h0) instead ofL0, and J
would then beAbL0(11h0)N/D rather thanAbL0N/D.
Thus we will takeh50 to be the steady state whose stabil
we will investigate.

Linear stability analysis of this solution proceeds in t
usual way: we expand the evolution equation to first orde
h and writeh as a linear combination of Fourier modes wi
amplitudeshk . We find that the Fourier modes decoup
even with the nonlocal term present, and each amplit
grows or decays exponentially with time

hk~ t !} exp@~sk2 ivk!t#, ~8!

with @3,11#

sk52k22Jk sink, ~9!

vk5Jk cosk. ~10!

If we use the symmetric saltation relation instead of the N
relation, thensk is unchanged, butvk becomes2Jk(1
2 cosk).

For smallJ the real growth ratesk is negative for allk, so
the steady state is linearly stable. For large enoughJ, how-
ever, there is a range ofk in which sk is positive, so the flat
sand bed is then unstable. The onset of instability occur
the valueJc of J for which the maximum growth rate is 0
We determineJc and the wave numberkc of the first un-
stable perturbation by solvingsk50 andds/dk50 simul-
taneously, which yieldsJc sinkc52kc andJc coskc521. We
then findkc54.493 andJc54.603. The wavelength of th
marginal mode~in units of L0) is lc52p/kc51.398, some-
what longer than the flight distance of a grain in saltatio
For k5kc , the NO saltation relation leads tovc52kc , so
the phase velocity of the marginal mode isv5vc /kc521.
With the symmetric saltation relation we getv52(11Jc)
525.60. This is a surprising result of the model, that wh
the sand grains that form the ripples are blown downwi
the ripple pattern itself driftsupwind. The group velocity,
however, is large and positive: From Eq.~10! we get
dvk /dk5J(2k sink1 cosk), which goes tokc

221519.19
at the critical point. For the symmetric saltation relation, t
group velocity is lower byJ, so at the critical point it is
14.58. Note that all velocities are in units ofD/L0.

If we make the problem two dimensional, allowing th
sand bed to extend in bothx and y directions, very little
changes. The creep term in the evolution equation beco
D¹2h, and as a result the expression forsk changes to

s~k,ky!52k22ky
22Jk sink, ~11!
l-
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wherek is now thex component of the wave vector of th
Fourier mode andky is its y component. Clearly, the linea
growth rate for a mode with nonzeroky is always less than
the rate for the corresponding mode withky50. Thus we do
not expect to see instabilities in which the transverse sh
of the ripples becomes wavy, since the first instability
occur is against a mode in which the ripples are paralle
the y axis.

IV. NONLINEAR ANALYSIS

We now carry out a weakly nonlinear analysis to det
mine the amplitude, shape, and propagation velocity of
restabilized ripple patterns that form whenJ is slightly above
its critical valueJc . The nonlocality of the model, the dis
persion in the imaginary part of the linear growth rate, a
the lack of an up-down symmetry lead to some unusual f
tures in the analysis.

We begin with the assumption that the fundamental wa
number k of the pattern which develops does not devia
much from the critical valuekc whenJ is nearJc . Hence we
define a small parametere by setting

J5Jc1e2, ~12!

and then define a scaled wave number deviationq by writing

k5kc1eq. ~13!

This is the appropriate scaling for the wave number beca
the stability boundary is approximately quadratic ink2kc
and linear inJ near its maximum. With these definitions w
find from Eq.~9! that sk is of ordere2.

The first stage of the nonlinear analysis consists of
panding the evolution equation~5! in powers ofh, assuming
the overall amplitude ofh is small. To do this, we may
rewrite the NO saltation relation~6! in the form j5x21
2h(j,t), repeatedly substitute this expression forj back
into theh(j,t) on the right side, and finally expand in pow
ers ofh. Differentiating the result with respect tox then gives

dj

dx
512h8~x21,t !1

1

2
@h2~x21,t !#92

1

6
@h3~x21,t !#-

1O~h4!. ~14!

~It is remarkable that the expansion ofdj/dx has such an
economical form. We show in Appendix A that the patte
continues to all orders inh.! To third order inh, then, the
evolution equation becomes

]h~x,t !

]t
5h9~x,t !2Jh8~x21,t !1

J

2
@h2~x21,t !#9

2
J

6
@h3~x21,t !#-1•••. ~15!

We now turn to the second stage of the calculatio
namely finding solutions to the third-order approximati
~15! to the evolution equation. We assume the solution w
have a fundamental wave numberk in the unstable range
with an amplitude of ordere. The quadratic terms in the
evolution equation will then generate a Fourier componen
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PRE 61 6753SURFACE INSTABILITY IN WINDBLOWN SAND
the solution with wave number 2k and possibly a constan
term, and the cubic terms will lead to a component w
wave number 3k. Thus we write

h~x,t !'eM cosu1e2@M01M2 cos~2u1u2!#

1e3M3 cos~3u1u3!1•••, ~16!

whereu5kx2f and the amplitudesM, M0 , M2 , M3 and
phasesf, u2 , u3 can all depend on time. We substitute th
ansatz into the evolution equation and expand in powers oe.
Then the coefficients of cosu and sinu give equations for the
fundamental amplitudeM and phasef:

Ṁ5skM2e2Jk2M0M cosk2
e2

2
Jk2M2M cos~k2u2!

1
e2

8
Jk3M3 sink1O~e4!, ~17!

ḟ5vk2e2Jk2M0 sink2
e2

2
Jk2M2 sin~k2u2!

2
e2

8
Jk3M2 cosk1O~e4!. ~18!

Evidently we need to findM0 , M2, andu2 in order to de-
termine the amplitudeM and propagation velocityḟ/k of the
pattern. Thex-independent term in the expansion of the ev
lution equation givesṀ050, soM0 is in fact a constant; as
argued above, we can choose it to be zero, so theM0 terms
in theM andf equations can be dropped. The equations
M2 and u2 come from the coefficients of cos(2u1u2) and
sin(2u1u2) in the evolution equation. These are best writt
in the form

d

dt
M2e2 iu25~s2k1 iv2k22ivk!M2e2 iu22Jk2M2e2ik

1O~e2!. ~19!

Similarly, we find equations forM3 andu3.
Note that in the equation forṀ (t), all the terms on the

right are of ordere2. ThereforeM (t) evolves on a long time
scale of ordere22, while M2 andu2 vary on times of order
unity. Thus we may regardM as a constant in the equation
for M2 andM3. Sinces2k is negative,M2 exp(2iu2) goes to
a quasi-steady-state value which is proportional toM2. Sub-
stituting this value into theM equation gives

Ṁ5skM2e2lM31O~e4!. ~20!

The analytical expression for the Landau constantl is com-
plicated and unenlightening; substituting Eqs.~12! and ~13!
into it gives

l516.905164.680eq1O~e2!. ~21!

Note that the correction terms in the evolution equation
M, which would come from including higher-order terms
the original expansions~15! for the evolution equation and
Eq. ~16! for h(x,t), are of ordere4, note3. As a result, thee3
-

r

r

terms in the equation come only from expanding the anal
cal expressions forsk andl in powers ofe. This also holds
for the equations for the higher harmonics. Thus we get
first-order corrections to all of our results essentially for fre

From Eq.~21! and the expression~9! for sk we obtain the
steady-state amplitudeM to first order ine,

M25~0.259 4620.597 19q2!2~0.877 2522.107 74q2!eq

1O~e2!. ~22!

We then find the phase velocity,

vph5ḟ/k52114.4934eq1~1.87724.320q2!e2

2~3.439210.128q2!e3q1O~e4!, ~23!

from Eq. ~18!.
As usual, the ripple solutions we have found are not

stable; instead, those with too large a wave number devia
q are linearly unstable. The calculation of the critical val
of q is rather intricate, so we defer it to Appendix B. Th
result is that the range of stable wave numbers is rather w
than usual—it extends out toq50.9095q0, where q0
5(2/Jc)

1/2 is the wave number deviation at whichsk van-
ishes to leading order ine. At the edge of the stable range
the amplitudeM of the ripple solution is 0.4157 times it
value atq50.

If instead of the NO saltation relation we use the symm
ric relation~7!, the results of the analysis are rather differe
The expansion ofdj/dx is not as simple and clean as th
derivation above; the evolution equation~15! is replaced by

]h~x,t !

]t
5h9~x,t !2J@h~x21,t !2h~x,t !#81J$@h~x21,t !

2h~x,t !#h8~x21,t !%82
J

2
$@h~x21,t !

2h~x,t !#2h9~x21,t !%82J$@h~x21,t !2h~x,t !#

3@h8~x21,t !#2%81•••. ~24!

We again substitute the ansatz~16! into this equation and
work out the Fourier components of the result. After carryi
out the calculation we find a much larger value for the La
dau coefficient,

l5151.26188.014eq1O~e2!. ~25!

Thus for a given wave number, the restabilized amplitudeM
of the ripples is smaller by a factor of about 3,

M25~0.028 997 520.066 743q2!2~0.003 966

20.019 031 5q2!eq1O~e2!. ~26!

The phase velocity is more negative than before, as we fo
from the linear stability analysis,

vph525.603314.4934eq2~1.50621.16475q2!e2

2~0.19721.853q2!e3q1O~e4!. ~27!
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6754 PRE 61KURTZE, BOTH, AND HONG
For a given amplitude, however, the harmonics are stron
than before. The range of wave numbers for which th
solutions is stable is somewhat narrower than before but
wider than usual, extending out toq50.7571q0, where the
amplitudeM is 0.6533 times its value atq50.

V. NUMERICAL SOLUTIONS

We now present numerical solutions and compare th
with the predictions made in the preceding section. The n
local evolution equation~5! was solved numerically with pe
riodic boundary conditions on a system of lengthl 52p/k,
so that only the Fourier modesnk contributed to the solu-
tions. For the discretization scheme, we chose an exp
method using forward differences in time and central diff
ences in space. The axis was discretized at 29 equally spaced
sites withDx52p/k3229 and solutions were generated f
five different values of J near Jc54.603, namely J
54.62,4.65,4.70,4.75,4.80 with values ofk chosen to span
the unstable region. Initial conditions were sinusoids of wa
numberk centered aroundh50. At t50, we start with a
sinusoid at a particular wave numberk, and let it evolve with
(Dx)2/Dt51/4 until it reaches a steady state. This tak
about 106 time steps. The nonlocal term in the evolutio
equation,J(dj/dx21), was evaluated for a givenx by find-
ing the nearest upwind value ofj satisfying the equationx
5j111h(j). Specifically, the first root of the function
f (j;x)5j111h(j)2x with value less thanx was obtained
by simply finding the two sites upwind ofx and nearest to it
between whichf (j;x) changed sign. Thendj/dx was calcu-
lated using the values ofh at these sites. The final stead
state,h(x,t), is then Fourier transformed, i.e.,

h~x,t !5 (
n51

`

@an~ t !sinnkx1bn~ t !cosnkx#, ~28!

from which we obtain Mn5(an
21bn

2)1/2 and un

5tan21(bn /an). Note thatM15eM and u15f in this no-
tation. The nonlinear analysis in the preceding section p
dicts that these quantities will go to time-independent valu
We find numerically that they actually oscillate as a functi
of time around their mean values. However, the magnitu
of these oscillations are quite small and decrease with
creasing grid resolution, so we believe them to be numer
artifacts. We therefore take the time averaged mean va
and compare them with the predictions of the weakly n
linear analysis.

We also find that although we start with an initial profi
with the average heighth050, the mean position of the
steady state pattern shifts slightly upward in some ca
downward in others, to a small but finiteh0. Since the mean
height of the sand bed is conserved by the exact evolu
equation, we believe that this is also a numerical artifa
Moreover, as mentioned in Sec. II, we can map any ste
state solution with finiteh0 to the solution withh050 by
redefining the horizontal length scale fromL0 to L0(1
1h0) and shifting the control parameter fromJ to J(1
1h0). However, the magnitude of the offseth0 was always
of the order of 1025 to 1023, and thus in all cases studie
here, the corrections due to such an offset are quite ne
er
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gible. Hence, our results without these corrections are vi
ally identical to those with corrections.

Figure 2 shows the amplitudeeM of the fundamental
mode as a function ofk for different values ofJ. The data
points are fairly close to the values predicted by the fir
order expansion~22!, which are represented by continuou
curves. Note that the curves are asymmetric around the c
cal valuekc and the asymmetry becomes more pronoun
for larger J. The weakly nonlinear analysis is capable
predicting this asymmetry only because the order-e terms are
included.

In Fig. 3 we plot the phase velocity of the fundamen
mode againstk for different values ofJ. The speed was ob
tained by calculatingf(t) in the expression cos@kx2f(t)#,
which is proportional to the fundamental mode in the stea
state. The functionf(t) was found to be linear int, sov was
calculated asv5ḟ/k. The data points are compared to th

FIG. 2. The steady state amplitudeeM vs k for five different
values of J. The continuous lines are the analytical predictio
given by Eq.~22!.

FIG. 3. The propagation speed of the steady state patternsvph vs
k for different values ofJ. Numerically obtained values are com
pared to the analytical predictions~continuous curves! from Eq.
~23!.
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PRE 61 6755SURFACE INSTABILITY IN WINDBLOWN SAND
weakly nonlinear predictions~solid line! given by Eq.~23!.
Only for fairly largeJ, and only near the high-wave-numb
end of the band of ripple solutions, does the velocity beco
positive, that is, in the direction of the wind.

In Figs. 4~a! and 4~b! are plotted the ratios of the ampl
tudes of the second and third harmonics to the appropr
powers of the fundamental ampltude, i.e.,R25M2 /M2 and
R35M3 /M3. The data fit quite well with the theoretical pre
dictions, R250.908 11510.501 18eq and R351.522 73
11.893 85eq, in particular near the onsetkc54.493, where
the nonlinear analysis is most reliable. Note that the fi
order terms in the analytical results match the slope of
numerical results. The curvature which is evident in the
merical data fork farther fromkc is apparently a higher-orde
effect. Note that the width of the band of ripple solutio
increases withe, so an appreciably largee is required to
reach these larger values ofuk2kcu.

In Figs. 5~a! and 5~b! we plot the phase anglesu2 andu3
againstk. The agreement between the simulations and
weakly nonlinear results,u2 /p50.229 1620.361 89eq and
u3 /p50.430920.6024eq, is again quite strong forJ near
onset. The order-e terms in the analytical results match th

FIG. 4. The ratios~a! R25M2 /M2 and ~b! R35M3 /M3 are
plotted againstk. The solid line is the analytical prediction.
e

te

t-
e
-

e

slope of the numerical data. For higherJ we observe a sys
tematic downward deviation in the numerical results. T
shift appears to be linear inJ, and so is second order ine
[(J2Jc)

1/2.

VI. DISCUSSION

We have carried out numerical and weakly nonline
analyses of the Nishimori-Ouchi continuum model@3,11# for
windblown sand, and also for a modification of that mod
which respects the physical symmetry of the system un
changes of the reference level of height. Both versions of
model yield the surprising result that the ripple patter
which form when the flat sand bed becomes unstable, d
upwind even as the sand that forms the ripples is blo
downwind. This drift is found in the linear stability analys
and persists in the weakly nonlinear results, and numer
integrations confirm that it is a real consequence of
model. Such a counterintuitive result has not been exami
or detected by previous Monte Carlo simulations of th
model@3,11#. It would be interesting to check experimental
whether or not ripple patterns can move against the wi

FIG. 5. ~a! u2 and~b! u3 are plotted againstk for five different
values ofJ. The solid line is the analytical prediction.
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and to determine whether this prediction is a strength o
weakness of the model. The symmetric version of the mo
actually predicts a considerably higher upwind drift spe
than the original Nishimori-Ouchi version.

Given that the Nishimori-Ouchi saltation relation violat
a fundamental symmetry of the physical system, it is perh
surprising that replacing it with our symmetric saltation r
lation results in only quantitative changes in the results. T
restabilized ripple pattern for a given value of the cont
parameter has a smaller amplitude~by a factor of about 3!
and higher drift velocity~by a factor of over 5! in the sym-
metric model than in the original version. The relative siz
and phases of the higher harmonics in the ripple shape
also different for the two models.

A number of modifications to the model are needed
order to make it comparable with experiments. A major
gredient that is left out of the model is any effect of t
surface topography on the wind. This lack means that the
no shadowing effect in the model. Including such an eff
would make it more likely for grains to settle on the dow
wind side of a ripple than on the upwind side, and mo
likely for them to be blown off the upwind side than th
downwind side. This would likely reduce the tendency of t
ripples to drift upwind. The result that the ripples drift u
wind in this model, which neglects shadowing, may be
indirect indication of the importance of shadowing in t
development of real ripple patterns. An improved model
creep may also be needed; a downwind bias in the cr
would modify the drift velocity. Perhaps most critical is
better and more realistic form of the saltation functio
which must account for the effects of the topography of
sand bed, and the many particle dynamics of the grains in
air as well as on the surface.

APPENDIX A

Consider the integral

I f[E
2`

`

f ~x21!
dj

dx
dx, ~A1!

wherej(x) is given by the saltation relation~6! andf is a test
function which is integrable and infinitely differentiable, b
otherwise arbitrary. We now change variables in this integ
from x to j,

I f5E
2`

`

f @j1h~j!#dj, ~A2!

and expand the integrand in powers ofh to get

I f5E (
k50

`
1

k!

dkf ~j!

djk hk~j!dj. ~A3!

Next we integrate thekth term by partsk times to get

I f5E f ~j!(
k50

`
~21!k

k!

dkhk~j!

djk dj, ~A4!

and finally change variables again fromj to x[j11,
a
el
d

s
-
e
l

s
re

-

is
t

e

n

f
ep

,
e
he

l

I f5E
2`

`

f ~x21!(
k50

`
~21!k

k!

dkhk~x21!

dxk dx. ~A5!

This result has the same form as the original expression
I f , but with dj/dx replaced by an expansion. Howeve
since the test functionf is arbitrary, this requires the expan
sion anddj/dx to be equal,

dj

dx
5 (

k50

`
~21!k

k!

dkhk~x21!

dxk ~A6!

which is used written in Eq.~15!.

APPENDIX B: STABILITY OF RIPPLE SOLUTIONS
AND THE ECKHAUS BOUNDARY

In this section we examine the stability of the ripple s
lutions, and so determine the Eckhaus boundary in theJ-k
plane, within which the solutions are linearly stable a
therefore may be observed. We begin with the ripple solut

h0~x,t !5eM cos~kx2vt !1e2M2 cos@2~kx2vt !1u2#

1O~e3M3!, ~B1!

with k5kc1eq, and we add an infinitesimal perturbatio
h1(x,t). If the perturbation contains a Fourier compone
with wave numberk1eq8, then the nonlinear terms in th
evolution equation will generate a component with wa
numberk2eq8. Thus we will start the calculation by takin
h1 to have the form

h1~x,t !5A2~ t !cos$~k2eq8!x2@vt1f2~ t !#%

1A1~ t !cos$~k1eq8!x2@vt1f1~ t !#%.

~B2!

Substituting this into the evolution equation, expanding, a
picking off the coefficients of the sines and cosines ofk
2eq8)x and (k1eq8)x yields a closed set of equations fo
the amplitudesA2 and A1 and the phasef11f2 . These
equations have the form

FIG. 6. The right- and left-hand sides of Eq.~B11!.
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Ȧ25S2A21aA1 cosc,

Ȧ15S1A11aA2 cosc,

ċ5V2a@~A1 /A2!1~A2 /A1!#sinc, ~B3!

wherec is f11f2 plus a constant which depends onk and
q8 ~but not time!, and the overdot denotes a derivative w
respect to the slow time variablee2t. The coefficients are
given to leading order ine by

S65
kc

2

2 F S kc
2

2
2

2l

kc
2 D M272qq82q82G ,

a5a0kc
2M251.981 83kc

2M2,

V5
1

2
kc

3M213kcq82. ~B4!

Note that it is important to keep the second-order term inh0
during the calculation, since it contributes toa. ~Omitting it
changesa0 to 2.585 59, a 30% change.!

We must now determine whether the amplitudes given
Eq. ~B3! grow or decay with time. We can simplify the equ
tions somewhat by defining

R5A1 /A2 ; ~B5!

the amplitude equations then become

Ȧ25~S21aR cosc!A1 ,

Ṙ5~S12S2!R1a~12R2! cosc,

ċ5V2a@~11R2!/R#sinc. ~B6!

Note that the first equation decouples from the last two. I
happens thatR and c go to constants ast→`, then the
amplitudes decay forS21aR cosc,0 and grow otherwise
Thus for a givenq, the ripple state~B1! is linearly stable if
this inequality is satisfied forevery q8, otherwise it is un-
stable. To see whatR andc actually do, we combine theR
andc equations into an evolution equation for the comp
variable

Z5R exp~ ic!, ~B7!

namely,

Ż5a~12Z2!1~S12S21 iV!Z. ~B8!
y

it

Clearly this equation has two fixed points, and solving
exactly reveals that the one with the positive real part i
global attractor and the one with the negative real part i
global repeller. ThusR cosc does go to a constant, and from
its value we can decide whether the ripple state is stable
not.

Since it is the real part ofZ, namelyR cosc, that deter-
mines whether the perturbation grows or decays, it is us
to rewrite Eq.~B8! in terms of the real and imaginary par
of Z,

Z5X1 iY. ~B9!

We find

Ẋ5a~12X2!1~S12S2!X2VY1aY2,

Ẏ5~S12S2!Y1VX22aXY. ~B10!

By linearizing about a fixed point (X,Y) of this system, we
quickly find that the fixed point is an attractor forX.(S1

2S2)/2a. To find the fixed points, we setẊ5Ẏ50 and
solve the second equation forY in terms ofX, then substitute
into the first equation to get

a2X~aX2S11S2!5
V2X~aX2S11S2!

~2aX2S11S2!2
.

~B11!

The two sides of this equation are plotted in Fig. 6. Bo
sides are symmetric aboutX5(S12S2)/2a, so there is
clearly one solution withX greater than this—the attractor—
and one, the repeller, withX less. In order for the perturba
tion to decay, the attractor must haveX less than2S2 /a.
From the plot, we see that this means that atX52S2 /a the
right side of Eq.~B11! must be greater than the left sid
After a little algebra, we can write this condition for th
perturbation to decay in the form

S1S2.
a2~S11S2!2

~S11S2!21V2 . ~B12!

Equation ~B12! is the condition for the amplitude of a
perturbation with aspecificvalue ofq8 to decay. In order to
conclude that the ripple solution with a givenq is linearly
stable, we must see to it that this condition is satisfied forall
q8. For this we must substitute for the parameters from
~B4! above. To put the result into a useful form, we defi
Q52q82/kc

2M2 and eliminateq2 in favor of M2. After some
rearranging, we find that the condition for the solution to
stable is
M2.
16Q

J

kc
2~b1Q!21~113Q!2

kc
2@~b2Q!214Q#@kc

2~b1Q!21~113Q!2#216a0
2~b1Q!2

, ~B13!
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where b512(4l/kc
2)50.834 132. The complicated func

tion of Q on the right has a single maximum for positiveQ,
at a height of 0.044 84. Ripple states withM2 below this are
unstable, while those withM2 larger than this are linearly
stable. From this we find that the range of wave number
linearly stable ripple solutions is given byuqu,0.9095q0,
whereq05(2/Jc)

1/2 is the largest wave number for which
ripple solution exists.

In summary, we have found that in the weakly nonline
regime, the flat sand bed is unstable against perturbat
with wave numbersk in the range

uk2kcu,eq05A2S J

Jc
21D , ~B14!
in

lo
a

of

r
ns

while the Eckhaus boundary is given by

uk2kcu,0.9095eq05A1.654S J

Jc
21D . ~B15!

For the symmetric saltation relation, the structure of t
calculation is the same but the numbers are different.
find that the marginally stable wave number is given byq
50.7571q0, so the Eckhaus boundary is now given by

uk2kcu,0.7571eq05A1.1465S J

Jc
21D . ~B16!
ett.
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